Higher order connectivity index of starlike trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the first extended zeroth-order connectivity index of trees

the first extended zeroth-order connectivity index of a graph   g is defined as 0 1/2 1 ( ) ( ) ,   v   v v g      g d      where   v   (g) is the vertex set of g, and v d is the sum of degrees of neighbors of vertex v in g. we give a sharp lower bound for the first extended zeroth-order connectivity index of trees with given numbers of vertices and pendant vertices,...

متن کامل

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

Trees of extremal connectivity index

The connectivity index wα(G) of a graph G is the sum of the weights (d(u)d(v)) of all edges uv of G, where α is a real number (α 6= 0), and d(u) denotes the degree of the vertex u. Let T be a tree with n vertices and k pendant vertices. In this paper, we give sharp lower and upper bounds for w1(T ). Also, for −1 ≤ α < 0, we give a sharp lower bound and a upper bound for wα(T ).

متن کامل

Matchings in starlike trees

1. I N T R O D U C T I O N Ordering of graphs with respect to the number of matchings, and finding the graphs extremal with regard to this property, has been the topic of several earlier works [1-4]. These results have chemical applications, in connection with the so-called total 1r-electron energy [5-7]. Let G be a graph without loops and multiple edges. For k being a positive integer, m ( G ,...

متن کامل

the eccentric connectivity index of bucket recursive trees

if $g$ is a connected graph with vertex set $v$, then the eccentric connectivity index of $g$, $xi^c(g)$, is defined as $sum_{vin v(g)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. in this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2002

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(01)00232-3